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SECTION 1

INTIOWCTIOU

In this report we present a general model for the notions of a

two-dimensional airfoil In unsteady aerodynamics. The equations of

notion are a set of coupled ordinary and functional differential

equations. Making use of general "approximating Wagner functions"

we develop a state space model that can be used for identification

and optimal control of such systems.

In Section 2 we formulate the basic (hereditary) equations and

in Section 3 we develop the state space model. Although the resulting

model is infinite dimensional, there are certain special features of

the state space model that can be exploited in order to construct

approximation schemes. In Section 4 we discuss these features and

present an approximation technique that can be used for parameter

estimation and optimal control of such systems. Section 5 contains

numerical examples that illustrates the basic ideas. Section 6 presents

some preliminary numerical results from an analysis of data derived

from wind-tunnel tests on an oscillating airfoil. Throughout this

report we shall use the symbol

~b
Is d f(a) g (s)

to denote the Rieann-StieltJes integral of with respect to f over

the interval [a,b] (see [6J for a discussion of Riemann-StiltJes

integration).



SECTION 2

THE HEREDITARY MODEL

Consider the two-dimensionual airfoil shown in Figure 1. . The

basic equations for the pitching and plunging motions of the air-

foil may be found in a number of papers (see for examuple [10,171).

We shall follow the developmient in [171 and use fairly standard

nomenclature and conventions. We shall not write down the exact

constants which may also be found in the various references cited

previously.

11 1J*I I/Mtil 1111 tllity
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Let h(t) denote the "plunge" and e(t) the "pitch" of the air-

foil at time t. The equations of motion cm be written in the

form

Me i(t) + K z(t) - -F(t), (1)

where x(t) is the column vector z(t) - col[h(t) a(t)] and F con-

tains the aerodynamic loads on the airfoil. In particular,

F(t) - a (t)] (2)

where L and M are the aerodynamic loads corresponding-to total

wing lift per unit depth and total moment about the 1/4 chord per

unit depth, respectively. For the airfoil considered here, it

foll.w that (note that in this case d - x - 1/2)

3  1 3b
Ma(t) - pb3  11(t) + [o U] z(t)), (3)

and

L(t) - w0b 2 b[1 'j z(t) + [0 U] ;(t)) .(4)

+ (2wpUb) D(t),

where D(t) is the "Duhamal integral." In particular, D(t) Is

given by

D(t) - 4 U4 - T)) 4(T)dT, (5)

3



where 9(Ut/b) is the WagneA function, and
t

Q(t) - f {([l b] i() + [0 U] i()d. (6)
0

To obtain a state space model that is suitable for

identification and optimal control, one must provide a "useful"

representation for D(t). One approach to this problem is to ap-

proximate D(t) by approximating the Wagner function 0. For

example, the Jones two-term exponential approximation of the

Wagner function (see (13,14]) results in a finite dimensional

model where D(t) may be viewed as the output of a second order

linear control system. Recently, it has been shown that D(t)

may be realized as the output of an infinite dimensional control

system (see [1, 2, 10]). In particular, D(t) can be explicitly

represented as the output of a system governed by a functional

differential equation (i.e., a hereditary system, see [ 91). if

this explicit representation is exploited, then the resulting

model becomes an infinite dimensional control system. Again, it

will be necessary to introduce some type of approximation in order

to obtain a workable finite dimensional model.

Although we shall make use of the fact that D(t) is the out-

put of an hereditary system, the approach presented below is sim-

ilar in 4p.WU to the Jones two-term exponential approximation

of the Wagner function which we now briefly describe.

Jones [131 approximated the Wagner function 0 by the two-

term exponential functior

4



t ( l~t/b - -B2 Ut/b, (7)
2(U(/b

where a- 0.165, *2 - 0.335, B1 = 0.0455 and 82 ' 0.3. If I is

substituted into (5), then D(t) is approximated by

i(t) - Q(t) - al B 1 M - a2 B 2(t). (8)

where B1, B2 satisfy the ordinary differential equations

{U{ (t) - B1 (t) + 4(t)

(9)U

-2(t) -2 b 32 (t) + Q(t)

This approach leads to a sixth order ordinary differential equation

model for the motion of the airfoil (see (171 for complete details).

In order to understand the hereditary model to be discussed

below, it is worthwhile to look at the sam approximation scheme

(i.e., the approximating model resulting from equations (7)-(9))

from a different (system theory) point of view. Write the Wagner

function as

- 1 - W(t), (1o)

and observe that the Duhamel integral (5) is equal to

D(t) - Q(t) - y(t) (11)

5



where

t
y(t) .t W(t - T) 4(T)dT . (12)

The function W(t) is called a Weighting pittAM and the Jones two-

term exponential approximation (7) is equivalent to approxi-

mating W(t) by

U/b [1 21
W(t) - [a 1 CL2] e I,1. (13)

Observe that (13) can be written as

W(t) - C X(t) B

where X(t) is the fundamental matrix for the ordinary differential

equation (of dimension 2)

=~) i(t) ; (4)bu 02 021

C - [01 02] and B - col[l 1]. In particular,

b(t) - Q(t) - i(t) (15)

where i(t) is the output of the second order control system

X(t) 0 - (t) + 1 4(t) (16)

with output

6



(c)- (a 1 a ]  (t) (17)

Consequently, one may view the Jones approximation as an approxi-

mating of

y(t) - It W(t - T) 4(T)dT
0

by the output of the (second order) finite dimensional system

(16)-(17) with input 4(t).

in the model detailed below, we propose to approximate y(t)

by the output of a simple hereditary system (i.e., a retarded

functional differential equation). There are two basic reasons

for considering this approach. As indicated above, one can show

that the model should include hereditary terms (see (2], [9]).

Moreover, since ordinary differential systems may be viewed as

"special" functional differential equations, the inclusion of

delayed terms is a vary natural extension of the "exponential

type" approximations.

We turn now to the general problem of approximattn8 y(t)

(and hence D(t)) by the output of a simple hereditary system. For

each parameter p E e , let G(t,p) denote a n x a matrix valued

function such that for p E e 1 the mapping t - G(t,p) Is of

bounded variation on compact subintervals of (-,O. Let B and

C be n-dimensional colun and row vectors, respectively. Let

r > 0 and consider the n-dimensional retarded functional differ-

ential equation



'd(t) - GdsG(aIp)xd(t + a) + BQ(t). (18)
-r

The output of system (18) is defined by

Yd(t) - C xd(t). (19)

The system defined by (18)-(19) is parameterized by y - (p,r,

BC T). We define a to be the set of all parameters y - (p,r,B,

cT ) Ex x i x R n x R such that r > 0 and the pair B, C

satisfies

n

CD- Cibi- 1/2 (20)1-1

The set 0 is called the set of admuh4Lb.t pakemetea for (18)-

(19).

Given (p.r), let X(t;p,r) denote the n x n matrix satisfying

i(t) = / d G(s,p)X(t + s)ds, t > 0,
-r

x (0) 1 n  (l

X(s)-o, 0 < 0.

where I n and 0n denote the n x n identity and zero matrice,

respectively. The matrix I(t;pr) is called the ,WdkWnt*

matAix for (18). (see [7, 123). Given y - (p r,C T) e a,

define the appoiumte WagneA 6 wnton O(Ut/b:y) by

8



Ut#A-; Y) 1- W(t;y), (22)

vhere V(t;y) in the veighting pattern for the hereditary systm

(18)-(19) given by

U(t;y) - CZ (t;pr) B. (23)

Observe that the condition that CS - 112 implies that

*(UO/b;y) - 1/2. Moreover, if y(t;y) denotes the output of (18)-

(19), then it follows that (see Hale (12])

t
y(t;y) It  (t - T;Y) Q(T)dT. (24)0i

Let D(t;y) and L(t;y) be defined by (see equations (4)-(5))

t U
D(t;y) 0 #(m(t - T)) 4(T)dT - Q(t) - y(t;y) (25)

and

L(t;y) - wb 2 ([1 b i(t) + 10 UJ i(t), (26)

+ (2wpUb) D(t;y),

respectively. If L(t;y) is substituted for L(t) In (1)-(2),

then v obtain the model

i* s(t) + Is s(t) - -I(t;y) (27)

where

9



7(t;y) (28

10



SECTION 3

TIE STATE SPACE HODEL

Given the parameter y - (p~rE,CT) E 0 we shall construct a

dynamical system for the airfoil described in Figure 1%l, Recall

that z(t) - colth(t) a(t)) and xd(t) is the n-dimnsional. a-

tor function that satisfies the retarded functional differential:

equation (18). Let 1(t) denote the (4 + n)-dimensional, vector

z(t) -colt A(t) ;(t) h(t) 0g(t) zd(t)].(9

The basic model. Is defined by ((27)-(28))

No ;(t) + K a (t) - -F(t;y) (30)

where

L~t ~y) 2 J] o~[ 1 12 ](t) + (31)
F ~ .Y N ( )W p b 2 8 b( 1

+ (2lroUb)[ ]D(t;y)

Observe that

end under the assumtion that ;(0) z (0) 0, It follow. that

U1



.[1; - ;(t) +[ s(t) - (t;_f). (32)
00 0 0

Using the fact that y(t;y) - C xd(t), it follows tram equatioms

(31) and (32) that (30) is equivalent to

2  1 21 2[ 1U t(3
No ;(t) + Y. Z(t) - -wpb b ;(t)- (b2 )

b 3b 0Ub

+ 2wpDb xd(t)

Define the 2 x 2 matrices E1i, All and A12 by

Ell "Me + vpb 2  12 34

A wpb 2 [ +I 22Ub[ 1, (3)

and

0

respectively. If A1 3 denotes the 2 x n astri

12



A2 2pUb[ 2PUb C . .C ] (37)
00 0 0

then the system (33) can be vritten as

l i(t) - A1 '(t) + A2 (t) + A13 xd(t)" (38)

Noreover, zd(t) satiafie
0

d (t) " I-r dG(Sp) Xd(t + ) + D (t) (39)

0- dG(ep)xd(t + 9) + B((1 bli(t) + (0 U];(t)).

Define the n x 2 matrices 93 and A3 by

331 a -B(lb] -- 2 b 2 (40)

-in  bin

and

-0 U

A3, - n[°U 01 " 2 '(41)

respectively. Vith 3 31 and A3, so defined, equation (39) becomes

0 dG~eP)X~t o)+ &1 ;(t), (42)
131 i(t) + d(t) f dSG(8,p)Zd(t + 8) +A 3(

13



in terms of the "state vector" X(t) - col[((t) 1(t) zd(t)].

equations (38) and (42) combine to form the system

0
Ei(t) -Az(t) +- do (sp) z(t+0), (43)

vhere 1, A and H(s,p) are defined by

E 0 2  0 ,(44)
L 1 0o :

rAll A12 A131
A 12 0 (45)

an I31 0 0]
and

: (s.p) 0 0 0146)[ 0 G(s,p)

Observe that in 8eneral (43) is a linear retarded functioual

differential equatiom with finite delay T 0. 0- MWver, the NOW

that results from the Jones tim-termi upemGGtWa ipSMIeaGielm If

but a speci l cea of (43).

M#WU3.l. Lt a- 2 (-,-6)i -[ ,e1 . nu

(114

r 2. 1md let a sel1I ]. Iltbl do 2 x I N~tl-Vlmed row-

aem i(o.p) I



_[-1 i2 0,b L 0 - 2

0( 0p) i [ <

if xd(t) Is any continuous 2-dimensional vector function defined

on [-r, +-), then

-r d8 (,p)xd(t + a) 0 xd(t),

and the "delay equation" (39) reduces to the ordinary differential

equation

; d(t) -1 -0 0
d b [1 - 2 }I'd(t) +[]()

The output In this case is given by

y(t;y) - [a1 o2)xd(t),

and the corresponding fudmental matrix i (t) - X (t;Y) is given by

- -U/b B2 tj

Cnsequently, the approximating Wagner function defined by (20)-(23)

is given by

15



-U/b U/ b 0 1

-U/b B1t -U/b 1 2t

which is the Jones two-term exponential approximation. Therefore,

the general model (43) includes as special cases those models

derived from two-term "Jones type" approximations.

ELMnL 3.2. Assume that the airfoil represents a tail section

of a flexible aircraft and that this tall section Is In the wake

of the forward wing. The aerodynamic loads on the tail at time

t are influenced by the motion of the forward wing at some pre-

vious time, say (t- r). Moreover, because of the elastic coupling

between the tail and the wing, the motion of the forward wing Is

influenced by the loads on the tail. Consequently, the loads on

the tall at time t involve the motions of the tail at a previous

time (t - r). This "time delay" feature of a wing-tall configuration

has been observed by Reding and Ericsson [ 14,15] in their stability

malysis of the 747/Orbiter.

To see how one can incorporate these pure tine delays

in the model defined by (3.15) we assum that r > 0 and n > 1 are

fixed. Let B and C be such that CB- 1/2 and for p E e asume

that A0(p). A1 (p) are n x n matrices paramterized by p. Define

the n x n matrix function G(sp) by

16



Ao(p) + Al(p), s - 0,

G(s.p) - AL(p), -r < a < 0, (47)

0, a_-.

If xd(t) is a continuous n-dimnsional vector function, then

0
I dsG(s,p)zd(t + 8) - AO(p)xd(t) + Al(p)xd(t - r).

-r

Consequently, the functional differential equation (18) becomes

the delay-differential equation

'd(t) - A0(P)xd(t) + Al(p)xd(t - r) + B?4 (t).

Also, the basic model (43) is equivalent

E (t) - 10 (p)X(t) + F,(p) x(t - r)

where E is defined by (44) and F0 (p) and F1 (p) are given by

SAll A12 A13 1
FO(p) - 12 0 0 , (48)

0

and

F 1 (p) - o o (49)
0 0 A_(p)

respectively.

17



We conclude this section with a model that Includes a pure time

delay as well as distributed delays. This model includes all of the

previously discussed models and yet a nmber of nice features are

retained which make the model a useful tool for Identification mad

optimal control.

Let r : 0 amd n > I be fixed and Ca 1/2 be as above. Assume

that Gc(sp)Ls an n x n matrix function contlinous a ad p and

deflne G(s,p) by

(Sp) - Ga(sp) + ;:r 0 c(u.p)du,

where Ga(s,p) Is defined by (47), i.e.

Ao(p) + A.(p). 5 - 0,

Ga(s-p) A, A(p), -. a < O, (50)

O, a < -To

If G(sp) is defined as above, and xd(t) is a continuous n-Magn-

sLmnal vector function, them

00

0 d-C(aFp)xd(t +s) - %o(p)xd(t)
-r

0
+ A(p)d(t -r) + f- Ccs (9p) d (t + s)ds.

Consequently, equation (3) my be written as

9 (t) - 0 (p)x(t) + F 1 (p)x(t - r) + I K(e~p)x(t+s)ds, (51)

isr



where 9 is defined by (44), Fo(p), Fl(p) are defined by (48)-(49)

and K(s,p) is given by

K(s,p) - 0 0 0 (52)
10 0 C (s,p)I

Although the model described by (51) has the nice feature

that it in some sense generalizes the classical approach due to

Jones (131, there are also theoretical justifications for consid-

ering (51) as the basic model. In particular, the "delayed

state" xd(t) is closely related to the circulation function r(t)

(see [4,9]) and it may be shown using theoretical aerodynamics

that r(t) does in fact satisfy a linear functional differ"

ential equation. A complete discussion of these theoretical

aspects will appear in a forthcoming paper (see [9]).

The structure of the system (51) is very special. There

are four "non-delayed states" (A(t) , ;(t), h(t) , a(t)) and n

"delayed states" xd(t). More precisely, the matrices Fi(p) and

K(s,p) consist of zeros except in the lower right-hand n x n

blocks. This particular feature can be exploited in the develop-

ment of numerical algorithms, resulting in enormous savings in storage

and CPU time. In the next section we present two numerical schemes

for identification and control of system governed by equations of

the form (51). These schemes are modified versions of the so

19



c1Ud AVE and SPLINE schemsS ("ee [3,4,51) that have been

developed especially for general hereditary system. of the foro

(51).

r
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SECTION 4

THE REDUCED STATE MODEL AND NUMERICAL APPROXIMATIONS

In this section we consider the hereditary control system

governed by the linear functional differential of order (4 + n)

E(p)x(t) - Fo(P)X(t) + Fl(P)X(t - r) C531

0
4 f K(e,p)x(t + s)ds + Gu(t),-r

with initial data

x(O) - , (s) - #(s), s < 0, (54)

and output

y(t) - Nz(), (55)

where n is a (4 + n)-dimensional vector and #(t) is a (4 + n)-

dimensional vector valued function. Moreover, we assume that

the system matrices E(p), P (p) and K(s,p) have the special

forms,

E 1 (p) 0 0

1 (p)- 0 1 2 0 ](56)
E 31 (p) 0 n

0 0 0

Sl(p) [ 0 0 (57)

o 0 A(p)
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and

0 0 0

K(sp) m 0 0 0 * (58)

0 0 0 (8,p)

We assuae that for each p E R the n x n matrix valued function*

a -i- G c (s,p) is integrable on [-r,0] and the 2 x 2 matrix 11 (p)

is non-singular.

Since E (p) is non-singular, it follows that 1(p) is non-

singular and

-0 0[E 1 (p)] -  0 059

(p 31(p ) [(- ) ]-1 0 2 I

The basic idea is to approximate the hereditary system

(53)-(55) by a (possibly large) system of ordinary differ-

ential equations. This approach to identification and optimal

control of hereditary systems has been used by a number of n-

vestigators (see [3] for a survey of this technique).

There are two particular schemes that have been used for such

hereditary systems; the AVE scheme (a "finite difference" type

scheme to be described below) and the SPLZNE schm (a "finite

elemnt" type schem, see [4,5]).
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Although theme two scbsme have been applied to a nmber of

hereditary systems, there in a problem with the procedure. In

particular, the size of the approziating system of ordinary dif-

ferential equations can become very large and thus reducing the

effectiveness of the algorithms. However, the special form of

the hereditary system (53)-(55) can be exploited to greatly is-

prove the usefulness of these general algorithms. To

describe the necessary modifications, we shall concentrate on the

AVE scheme. Similar modifications are valid for the SPLUME scheme

and a complete theoretical and numerical analysis of both proce-

dures (including convergence results) will appear In a future

paper.

Let 0 < r < rM < 4- ad suppose that r r x [(ra ] is

a compact convex set. We assum that the initial data n E R( 4 +n)

And #: [-rn, 0 1 ( 4 +n ) are fixed and consider the following

typical paramster estimation problem (see [ 8 1).

PRoILD (mD). Given Aht input* dwniton u and obwwmatiou

at ta" (0 < 1F~ 2  . (E* T), 6ind the q6Ateu

pd eete.u y* - (p*,r*) E r whiv. mnie the ,,w& t

J(y) 11 yt;Y) - 12, (60)
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Given y - (p,r) E r and a positive Integer I, partition the

Interval FO] Into IN ubintervals [tj W. t, 1 ) e

t (r) -- r/N, j - 0.1, 2... . or j 09 2 ...
I

define by

N -14 (61)40

and

tN (r)
" -" J 1 *(s)ds. (62)

tj (r)

Note that Nis an (4 + n)-diumsional vector and that

N II I (63)

is an (N + 1) (4 + n)-dimmusional vector.

Define the [(N + 1)(4 + n)] x [(N + 1)(4 + n)] mtricee

EN(p) and A (p) by

(p) (64)
0 0

and
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-i -N1  00 0

r r

U N -N

ARN 0 [a, 0-I 0 0 1 0 (6)

oN-co G op op __ 0 1 (8

wreciey

?~(p) AI Kz()dau.t (66)
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with Initial condi1tion

z (0) (70)

and output

yN(w) - I? x(t). (71)

Corresponding to system (69)-(71) we consider the following

approximating parameter estimating problem.

PROBLEM (iDI). Given the inpcwt &action u ad Ab4'wtionA

<* t, T) , gd the aysteA

Padt".t Y. (p , ) E r Aick mximize. the evo'

- ~~ N~ f;) _ Yi (72)
i-1.

whzec y (t;y) "A thet oU4met at tin t to the 4~p0XI~t~

VAyte (69)-(71).

Under very reasonable assumptions it is possible to show

that a N -, the optimal solutions y to PROBLE (IDS) con-

verge to y*, the optimal solution of PBLEM (3D) (see [3,8]).

Therefore, the idea is to select a value of V, construct the

approximating system (69)-(71) and use a standard algorithm

tosolve PROL LE (UK) for .Y^ if Is"large enough". thouy

is a good approximation to y*. This particular numerical scheme

i.s called the AVE schm.
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Consider the size of the approximating system (69)-(71) do-

fined by the AVE scheme above. The dimension of this system Is

Dfl(N,n) - (N + 1) (4 + n), which for large values of X (or n) grown

very rapidly. This is illustrated In Table 4.1 for various values

of N and for n -1, 2, 3.

TABLE 4.1. The dimens ion of the AVE approximating systems

for values of N and a.

N DIM(N.l) DI(N.21 DIM(N.3)

2 15 18 21

4 25 30 35

8 45 56 63

16 85 102 119

32 165 198 231

64 325 390 455

For N - 16, 32, 64 . . . . the size of the approximting system,

(69)-(71) become an Important (and limiting) consideration In

numerical computations. Therefore, we seek sonie method to reduce

this computational burdon. To modify the AVE scheme It is sufficient

to make a simple but Important observation concerning the special

structure of the hereditary equat ion (53). In particular, we note

that at moot n of the (4 +. a) states in (53) are delayed. Consequently

It is not necessary to approximate all of the "history" z(t 0,

but only those coordinates which are delayed.
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0 se that (53) is an ordinary differenial equation and no approx-

lmlaws needend. Consquently, we assomm that 1 < d % U and

pautItlem thinst iese 70(p),K7s(p) andM Ma follows:

7()- 171p 1 70(p)). (73)

71 ( (0' 1 71 2 (P)J1. (74)

K(s.P) ( 0 1 S80'(75)

V( 1 F0(P). F1(p M K(SIP) We [(4 + a) x u mtztlms.

New s beamedi utdmm less of gnmwnllty tht dho firs

(4+a)-a d easimn owe thn awe column. Let 10 1 t % I done"

ths ad x (4 * A) mtix cameladag of thn wa wit moves 13,

thsfirst 0 + a)-aela andm define 5 0 0* Is Is.. 0 5

by

*3-n (76)

aidd
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where 42is deflued by (62). note that

0~l 1 (6

Isas [a4.d * (4 + a)]-dusional vector.

Dpflu. the [u,.U + (4+ )] x 'nd"N + (4 + n)1 matrices

4 m)ad A4(p) by

U(P) 0 0 . .. 0

0 1 0 . .. 0 (79)

* d

0 0 . . .1

and

701.(P) 702(p) 41(p) 42 (P) . 41 (P) 71 P + 4
o !I - 1 0 . 0 0

r ld r nd

0 0 A, -!i. 1 . 0 0
rnd rnd

-jp (80)

r ad r nd J
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where Id represents the nd x nd Identity and

N0

tN(r)

The fact that only nd of the states in the hereditary equation

(53) are delayed implies that the state space model defined by (53)-

(55) is not a "ukinmal realization" for the system. Consequently,

the corresponding Nth approximating system defined by (69)-(72)

is not a minimal (I.e. not controllable and observable) and can be

reduced in dimension. In particular, if we define the REDJCED

4ppkoxLztbg Ay6 tm by the ordinary differential equation

4(p) ;'(t) _ 1~(p) v M(t) + N~u(t) ,(2

with initial data

N N (3v (0) - (3

and output

N Wt - 1?RvN(t) ,(84)

.3 N
where - o, 0 ,1 o and G R- col [G, 0, ... , 01, then one

can show that (69)-(71) and (82)-(84) have the sase input-

output operator (i.e. yN(t) -yN(t)).
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The dimension of the reduced system defined by (82)-(84) depends

on N, n and nd. Moreover, the system is largest when nd - n. For

applications to the airfoil in Figure 1.1, the value of nd - I is

reasonable and in this case the dimension of the reduced system (82)-

.(84) is given by DTXM(,n) - (v + (4 + n)]. Table 4.2 illustrates-

the sizes of the REDUCED appLoximVAtg ay~tz6 for various values of

N and n, in the case that nd - 1. If one compares Table 4.2 with

Table 4.1, then it becomes clear that for large values of N and n

the system (82)-(84) is much smaller (and hence much more manageable

for numerical calculations) than the non-reduced AVE system (69)-(72).

For example, if N - 64 and n - 3 then the dimension of (69)-(72) is

455 while the dimension of the "equivalent" system (82)-(84) is 71!

TABLE 4.2. The dimension of the REDUCED AVE

approximating systems for values

of N and n.

nd-l

N DIMR(N.1) DIMR(N,2) DIMR4N.3)

2 7 8 9

4 9 10 11

8 13 14 15

16 21 22 23

32 37 38 39

64 69 70 71
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Corresponding to problem (ID) and (IDN) we have;

PROBLEM (IDN R). Given the inp un wwtion u and obwtvation6

yatamut±(O Ti <2 c T - T), jid they6tem pawa.
(N -N i <-FN<--

uietM 't6 -N -NR ) E r which minimize the evwti

N (Y) M N Iy(t ; Y) _ y~ 112, (85)

N -

w~Am YR(t;y) i the outp at time t to the 'tduced appx-

inating 4yjtem (82)-(84).

Although we restricted ourselves to the AVE approximating

scheme, the same basic ideas can be applied to the SPLINE scheme.

However, there are some differences in the two algorithms. For

example, it is not true that the REDUCED SPLINE SYSTEM has the

same input-output operator as the SPLINE SYSTEM.
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SBCTION 5

NUMERICAL EXAMPLES

In this section ve present some numerical examples to illus-

trate the method discussed above. All the numerical results vere

run under the Conversational Monitor System on an IBM 370/158 at

the Virginia Tech Computer Center. The test model is described

by the second order delay equation

S[[_ 1] [ ] [0 +] [ ] 1(t) (86)

with initial data

1 (87)

x2 (s)

and output

y 1 (t(08) 1(t
y 2 (t) 0 1 x(t)

vhere u.1 (t) is the unit step at t - 0.1. The final time of

T - 2 is used in each example.

The "observations" -Y were generated by selecting the "true"

set of paramters y* (w*, a*, r*) - (4, 10, 1), using the method
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of steps to solve (86)-(88) for y(t) and settin- y. - y (t').

Using this procedure, we generated 101 equally spaced data points

on the interval [0,2].

For various values of N - 2, 4, 8, 16, . . . the two problems

PROBILE4 (IDM) and PROBLEK (IDNR ) were solved. The mount of CPU

time required to solve each problem was recorded in order to com-

pare the two algorithms. In addition to the AVE scheme detailed

above, we tested the SPLINE scheme so that a comparison of these

two schemes could also be made. The maximm likelihood algorithm

described in C 8] was used In all of the calculations.
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EAMPLE 5. 1

In this example we assumed that the time delay r - 1 in known

and estimate w and a. Since the maximum likelihood estimator is

an iterative algorithm, start up Aalues have to be provided. For

this example the initial estimates were W - A anda - 8.0. The nu-

merical results for this example are summarized in Tables (5.1) -

(5.2).

Observe that the AVE scheme did not converge for N - 2, 4.

For N - 32 the dimension of PROBLEM (IDN) is 66. Consequently,

(because of storage limitations) this approximating system is

"two large" and we could not solve PROBLEM (IDN) for N - 32. The

AVE scheme produces exactly the same parameter estimates as the

REDUCED AVE acheme. However, the REDUCED AVE scheme requires con-

siderably less CPU time than the AVE scheme.

The SPLINE algorithm converged for all values of N. Moreover,

as expected the SPLINE scheme produced better parameter estimates

than did the AVE scheme. Note that not only does the reduced prob-

lem require less CPU time, the REDUCED SPLINE scheme produces bet-

ter parameter estimates than the full SPLINE scheme. Figures 5.2

through 5.3 illustrate typical "converged" data fits for N - 8,

16, 32 using the AVE scheme. Figure 5.4 shows the

N - 8 SPLINE data fits. The figures are plots constructed by using

the reduced approximating systems. However, it is impossible to

distinguish these plots from the plots one obtains using the a-

reduced approximating system and therefore those plots are not

included.
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TABLE 5.1 A comparison of parameter estimates obtained using

the AVE and REDUCED AVE approximations.

PROBLEM (IDN) - AVE PROBLEM (IDNR) - AVE

-N AN AN ANN w a CPU N w R a RCP

2 DID NOT CONVERGE 2 DID NOT CONVERGE

4 DID NOT CONVERGE 4 DID NOT CONVERGE

8 3.2476 15.5113 47 sec 8 3.2476 15.5113 20 sec

16 3.6431 12.2373 171 sec 16 3.6431 12.2373 47 sec

32 32 3.8233 11.1275 189 sec

True 4.0000 10.0000 True 4.0000 10.0000

TABLE 5.2 A comparision of the parameter estimates obtained using

the SPLINE and REDUCED SPLINE approximations.

PROBLEM (IDN) - SPLINE PROBLEM (IDNR) - SPLINE

NN AN ANN waCPU N 'OR a RCP

2 3.7738 7.8675 18 2 3.6466 9.1217 8

4 3.9674 9.9133 17 sec 4 3.9535 10.3377 13 sec

8 3.9981 9.9651 36 sec 8 3.9950 10.0643 20 sec

16 3.9979 9.9731 94 sec 16 3.9970 10.0000 41 see

32 32 3.9976 9.9842 184 sec

True 4.0000 10.0000 True 4.0000 10.0000
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"4 I

1R2N81R:V ITR= 8
5.00

+++ATA w -4.0000 a -10.0000

AVE ciAs 3.2476 a - 15.5113

3.60

B+

2.20+ +

0.80

-0.61

-2.0 I

TII4.

0 .8 0 0.0O 0.80 T .20 1.60 2.00

FIGURE 5.1. The data fits for Example 5.1 using N =8 and the AVE
approximat ionab
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O 1R2N8RV I TR= 8
15.00-

8.00+

++

-. 01 :"+

+ ++ DATA w a-4.0000 a M-10.0000

AVE 8-3.2476 ;8 15.5113

-13.01-

-20. 00 I I I I I
TIM

0.00 0.AO 0.80 1.20 1.60 2.00
FIGURE 5.1.b. The data fits for Example 5.1 using N -Sand the AVE

approximation.
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0 1R2N16R ITR= 95 .00 i i

. .. DATA w* = 4.0000 a - 10.0000

46 416
AVE . 3.6431 a 12.2373

3.60

2.20

0.80

4 + +

-0.6

-2.00I

TDM
0.00 0.A 0 0.80 1.20 1.60 2.00

PIGUME 5.2. The data fits for Example 5.1 using N 16 and the AVE
approximattions.
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01R2N16R ITR= 9
15.00 i "

8.00 -- +

1.00 
+

OOl

++ + DATA w , 4.0000 a , 10.0000

AVE 3.6431 16. 12.2373

; -13.01

-20.00 - I I I I,
TINE

0.00 0. .,0 0.80 1.20 1.60 2.00

IGUIRE 5.2.b.The data fits for Example 5.1 using N - 16 and the AVE
approximations.
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01R2N32 I TR= 9
5.00 111111 

1

" . . DATA " 4.0000 -10.0000

AVE ;32 - 3.8233 i32 11.

3.60

2.20

0.80

-0.61 "

-2.00I

0.00 0. 40 0.80 1.20 1.60 2.00
IrJGMT 5.3. The data fits for Example 51 using N -32 and the AVE

Approximations.
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01 R2N32tR I TR= 9
15.00

8.00

+ -+
+4+

-6.01
/-* 

•

t i .+ DATA 4 4.0000 a - 10.0000

-32 i83 32
- - AVE .8233 - 11.1275

-13.01 "

-20. 00-

0.00 0.LIO 0.80 I1.20 1.60 2.00
FIGURE 5.3.b. The data fits for Example 5.1 using N * 32 and the AVE

approximations.
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1 R2N8SP I TR= 8
S.00 I II

* *

++ DATA w -4.0000 a *10.0000

SPLUIZ W 3."50 10.0643

3.60

2.20

0.80

-0.61

-2.00
TinS0.00 0.q0 0.80 1.20 1.60 2.00

GrmUi 5.4. The data fits for xample 5.1 using I - 8 sad the SPLINE

approxlations.

43



O 1R2N8SP I TR- 8
15.00

8.00

1.00

('U

-6.01
++ + DATA a = 4.0000 a = 10.0000

48 -8
SPLINE 8 - 3.9950 a - 10.0643

-13.01--

-20.00-I
TIME

0.00 0.40 0.80 1.20 1.60 2.00

FIGUR 5.4.b. The data fits for Example 5.1 using N m 8 and the SPLINE

approximations.
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MZINFL 5.2.

We nov consider the problem of estimating al three parameters

(w, a, r) In the model (86)-(88). Start up values were taken to

be w- 415, a- 8.0 and r- O.S. The eddition of the time delay as

an unknown parameter increases the complexity of the problem and the

AVE scheme never converged. However, the SPLINI scheme converged

for all admissible values of N. Tables 5.3 and 5.4 contain a

sumary of the numerical results for this example. Am n the pre-

vious example, the reduced problem required less CPU time to con-

verge and generally produced better paramter estimates than the

full SPLInE scheme. Figures 5. 5 through 5. 7 Illustrate the

converged data fits for N - 2, 8, 32.
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TABLE 5.3. Example 5.2 parameter estimates using SPLINE.

SPLINE SCHEME - PROBLEK (IDN)

Na rN CPU

2 3.4340 8.1849 .8725 31 sec

4 3.8313 9.0540 .9476 28 sec

8 3.9949 9.9439 .9989 60 sec

16 3.9986 9.9775 1.0002 241 sec

True 4.0000 10.0000 1.0000

TABLE 5.4. Example 5.2 parameter using REDUCED SPLINE.

SPLINE SCHEME - PROBLEM (IDN R

-N -N -N
N a aR r R CPU

2 3.5183 9.0515 .9445 15 sec

4 3.8092 9.3691 .9457 19 sec

8 3.9919 10.0448 .9991 39 sec

16 3.9977 10.0002 1. 0002 104 sec

32 3.9979 9.9862 1.0001 436 sac

True 4.0000 10.0000 1.0000
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O 1 RN2SP ITR- 7
5.00 -

. .+ DATA w 4.0000 a - 10.0000 r w 1.0000

SPLINE ;2" 3.5183 a2 - 9.0515 r _ .9445

3.60

2.20

0.80

-0.61 -- ++\+

-2.o 00 1
0.00 0.40O 0.80 TIME 1.20 1.60 2.00

FIGURE 5.5. The data fits for Example 5.2 using N =2 and the SPLINE

approximations.
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01 RN2SP ITR- 7
15.00( 

I I ii 
i

++8.00 ".4 +.

++t

-6.01 -
. . . DATA w - 4.0000 a - 0.0000 r - 1.0000

SPLINE 2 -3.5183 a2 -9.0515 ;2 _ .9445

-13.01--

-2.00 
4

0.00 0.0 0.80 1.20 1.60 2.00

FIGURE 5.5.6. The data fits for Examle 5.2 using N =2 and he SPLINE

approximtions.
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O1RN8SP ITR- i0
5.00

+++ DATA w -4.0000 a 10.0000 r -l1.000

- SPLINE w- 3.9919 a-10.0448 r- .9991

3.60

2.20

0.80

-0.61

-2.0 I I I I I I I I
TINE

0.00 0.40 0.80 1.20 1.60 2.00

?IGIM 5.6. The data fits for Example 5.2 using N - 8 and the SPLINE

approxitat lons.
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1 1, RN8SP I TR= 10
15.00 I I I I

8.00

1.00

\j

-6.01* *
+ . 4 DATA w = 4.0000 a = 10.0000 r - 1.0000

-8 -8 -8
SPLINE w = 3.9919 a = 10.0448 r _ .9991

-13.01"

-20 .oo I I I I I I I
TIME

0.00 0.L0 0.80 1.20 1.60 2.00

FIGURE 5.6.b.The data fits for Example 5.2 using N = 8 and the SPLINE

approximations.
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0 1 RN32S I TR= 15
5.00

. . . DATA -4.0000 a* - 10.0000 r - 1.0000

- SPLINE 3.997 a 3 9.9862 ~-100

3.60

2.20

0.80

-0.61

-2.00 I I I I I I I I
TUM

0.00 O.90 0.80 1.20 1.60 2.00
FIGURE 5.7. The data fits for Example 5.2 using X - 32 and the SPLINI

approximations.
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010 RN32S ITR= 15
15.00

8.00

1.00

Cuj

-6.01 + ++ DATA w -4.0000 a -10.0000 r -1.0000

- C3 - 1.0001
-- SPLINE A3 3.9979 ,. - 9.9862 ,, . .00

-13.01-

-20.00-
TIME

0.00 0.L 0 0.80 1.20 1.60 2.00

FIGURE 5.7.b.The data fits for Example 5.2 using N - 32 and the SPLINE
approximations.
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SECTION 6

PRELIMINARY ANALYSIS OF WIND-TUNNEL DATA

Several numerical experiment$ were conducted using actual w-

tunnel data for a system similar to that shown in Figure 1.-1.- The

experiments were performed at Neilsen Engineering and Research, Inc.

In Mountain View, CA, under the supervision of Dr. S.* C. McIntosh.

Dr.Z Mntosh gratiul sad soe f the data available to the

Temathematical nodel appropriate for the experimental system

axis, at which point the plunging motion is measured, Is not at the

quarter-chord point (x , 1/2). Thus, while the mass matrix M, has

the form

M

4the aerodynamic added msa-matrix is somewhat more general than the

form used in (3.6)

irpb 2

L b *XQ b ad+x)
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A second generalization is the inclusion of viscous dmaing terms

Ch and Ca along the diagonal in the submatrix All (see (35)). The

structural stiffness matrix is diagonal with elements kn and k , as

in [17].

Since the elastic axis is not necessarily at the quarter-chord,

the aerodynamic moment must include a term involving the product of

the lift and a moment arm b(x - 1/2). The aerodynamic variable now

"feeds into" the pitch, as well as the plunging equation of motion.

Thus the A1 3 sub-matrix is written (see (37)).E ' 1
A13 " 2w p U b C.

b 13- - 1/2) j

The generalization to non-coincident elastic axis and aerodynamic

center also requires alteration of the E3 1 sub-matrix which now has

the form (see (40))

E 31 B11, W(/2 + x CL .

The nominal values of the various system parameters are given

in Table 6.1
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TABLE 6.1. Noinal values of the system parameters.

parameter value

IS 1.628-lO-31b-sec
2 /in 2

1(1 5.42610 l
3 1b-sec

2

S 6.74110-4 lb-sec 2 /in

b 4.95 in

x .297

P 1.47 x lO-7 lb-sec
2 /in 

4

k h 6.944 lbs/in
2

k 43.1 lbs

Ch 1.9.10-3lb-sec/in
2

C 8.7•lO-31b-sec

U 1325 in in/sec.

Note that the only model paramters for which values have not been

specified are the matrices B and C.and the matriz-valued function

G(s;p). These quantities describe the dynamic model for the unsteady

aerodynamic behavior (see (21)-(23)).
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EXAMPLE 6.1

The first example for which we present results employs a first-

order ordinary differential equation model for the unsteady aero-

dynamic behavior. This amounts to using a single exponential to

approximate the weighti" pa tt W(t) in the Wagner function repre-

sentation 2.10. Thus, we take n - 1, B - 1 and G(s;p) - gu0(s),

where u0 is the usual unit step at zero. In this case the Rieaann-

Stieltjes integral in (42) becomes

/0r ds[g u0 (s)]xd(t+s) - glxd(t)

so that (42) is an ordinary differential equation. Note that from

(20) theoretically one should expect C a 1/2. With this information

the overall system (43) is a fifth-order ordinary differential

equation.

The data used consists of sampled values of the variables h(t),

;(t), h(t) and a(t) at 157 equally spaced points on the interval [0,

.25 sec.]. Since the data seemed relatively free of noise, the

initial values for the first four components of the state were taken

as the recorded values at the initial time. No initial value is

available for state component x5, the aerodynamic variable, thus it

was identified. Note from (35) that the second matrix in the sum

for All includes a multiplicative factor, 2w, which is theoretical

lift-curve slope. In this experiment the lift-curve slope was
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Identified so that the (1,1) and (1,2) elements In the sub-atrix

Sare allowed to vary accordingly. The other parmters identified

are the scalar coefficient C, which appears In the sub-matrix A13 -

and the aerodyamic time constant SI.

Results of this experiment are Illustrated In Table 6.2 and In

Figures 6.1 and 6.2. In these figures y(1)-h, y(2)u&, y(3) -h and

y(4) =

TAB3L 6.2. Pariter estimates for the ordinary dLffernital,

equation model; zample 6.*1.

iteration Z(O) Ck  C $I

0 0.0 6.28 .500 -12.2

1 25.8 11.65 .838 -28.6

5 95.4 8.41 .724 -95.2

10 64.3 8.68 .652 -75.4

20 78.9 8.98 .628 -6.0

Shown In Figure 6.1 are the data match& using the start-up

estimates for the parmters. As Is evident from the y(l) and y(2)

matches, the fundamental frequency Is nearly correct but the actual

plunge damping is higher than predicted by the model while the pitch

damping Is lighter. The actual data exhibits some high frequency

oscillations that are completely missing In the model. The "converged"

results shown in Figure 6.2 Indicate some Luprovement In the data fits
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but the quality of the fit is still quite poor. It seems likely that

some of the "fixed parameters" (e.g. the plunge damping parameter, Ch)

may be in error. Alternatively, it may be that the assumed model

structure (aerodynamics via a first-order ordinary differential equation)

is not appropriate. In any case a more systematic investigation is

needed. As in the previous figures we use " +++ " to denote the

wind-tunnel data values and a solid line to indicate the values of the

output from the mathematical models.
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EXAMPIE 6. 2

A second experiment was conducted using a simple dalay model for

the unsteady aerodynamic behavior. The situation Is very similar to

the ordinary differential equation case described above, except that

the matrix valued function G(s;P) now has the form G(s;p) - giu0 (q)

+ 82u..r (a) so that the Riemann-StieltJes Integral in equation (42):

now becomes

f do G(B;p)xd(t+s) - glxd(t) + 62 xd(t-r)

The system parameters Identified Include C, , C and g1 as above,

and the additional parameter 2 . The time-delay, r, wes fixed at

r - .05 sec. This selection was sade based on a very preliminary scan

of the data. In this case the requried Initial data Is the value.

x5 (0) and the Initial history of x,(-) on the interval [-r,01. Rather

than allow the computer algorithm complete freedom of choice In

determining the initial data several 'experimentsl were performed with

operator selected values.* The values selected were x 5(0) - 36.,

x5 (-r/E) - 4.0, x5 (-2r/N) - .25 and all other x,, 'knot' values are

zero. In the results reported the SPLIM REDUCED procedure was used

with 5 16.
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TABLE 6.3. Parameter estimates for the hereditary model; Example 6.2.

iteration C C 81 j

0 6.28 .500 -12.2 0

1 11.72 .739 -70.0 13.7

5 9.56 1.512 -270.5 -113.5

10 9.07 1.658 -309.8 -104.6

20 8.81 1.496 -274.8 -62.5

49 8.77 1.412 -255.1 -47.5

90 8.76 1.411 -254.8 -47.8

Results from the parameter identification algorithm for this

case are shown in Table 6.3 and in Figure 6.3. The startup fits

are the same as in the previous example and are not repeated. While

the data fits for the hereditary model exhibit some improvement over

the previous exaple the quality of the matches ia still rather poor.

As noted above it seems that one or more of the 'fixed' parameters

has been incorrectly specified.
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SECTION 7

CONCLUSIONS

The state space model (43) offers a generalization of earlier

formulations of dynamic models for the system shown in Figure 1.1

[13, 16, 17]. The inclusion of a hereditary dynamic model for the

'aerodynamic' states is significant in that several recent investigations

have shown that fundamental unsteady aerodynamic analysis produces

precisely such hereditary models (1. 2, 9].

In order to deal efficiently with the problem of parameter estimation

for the model (43) some earlier numerical algorithms for identification

of hereditary systems [4, 5, 8] were reworked to incorporate separation

of 'delayed' and 'non-delayed' states. This refinement results in

significant savings in computer costs and increases the scope of pro-

blems for which the methods are easily implemented.

Some results from preliminary studies of identification using

actual wind-tunnel data indicate some improvement when hereditary

modelling is used. These results mast be viewed with caution until

more systematic studies are performed.

73



SECTION 8

REFERENCES

1. A. V. Balakrishnan, Active control of airfoils in unsteady
aerodynamics, Appt. Math. and Opt., 4(1978), 171-195.

2. A. V. Balakrishman and J. W. Edwards, Calculation of the Tran-
sient motion of elastic airfoils forced by control surface
motion and gusts, NASA Techniact MemoAandum 81351, August,
1980.

3. H. T. Banks and J. A. Burns, Hereditary control problems:
numerical methods based on averaging approximations, SIAM
J. Cont'wL and Optbnization, 16(1978), 169-208.

4. H. T. Banks, J. A. Burns and E. M. Cliff, Spline-based approx-
imation methods for control and identification of hereditary

systems, in InteJnati ona Sympoium on Sy~tem6 Opt4mi.za.ton
and Anaty6i6, A. Bensoussan and J. L. Lions, eds., Lecture
Notes in Control and Info. Sci., Vol. 14, Springer, Heidel-
berg, 1979, pp. 314-320.

5. H. T. Banks, J. A. Burns and E. M. Cliff, A comparison of
numerical methods for identification and optimization prob-
lems involving control systems with delays, Srown Univ. LCDS
Tech. Rep. 79-7, 1979, Providence, R.I.

6. R. G. Bartle, The Etements oj Rea2 Anatyzis, John Wiley &
Sons, New York 1976.

7. R. Bellman and K. L. Cooke, Di6eentiao Vife66 nce Eqaation.6,
Academic Press, New York, 1963.

8. J. A. Burns and E. M. Cliff, Parameter identification for
hereditary systems: final technical report on grant AFOSR-
77-3221A, September 1979. .AFWAL TECHNICAL MEMORANDUM 80-10-FLGC,
Wright-Patterson AFB, Ohio, 1980.

9. J. A. Burns and E. M. Cliff, Modeling unsteady aerodynamics
via functional differential equations, preliminary report.

10. J. W. Edwards, Unsteady aerodynamic modeling and active aero-
elastic control, SUDAAR 504, Stanford University Report,
February, 1977.

11. J. W. Edwards, Unsteady aerodynamic modeling for arbitrary mo-
tions, AIAA Jouinat, 15(1977), 593-595.

74



12. J. K. Hale, Theory o6 Func onat V6imntiat Equation'6,
Springer-Verlag, New, York, 1977.

13. R. T. Jones, Operational treatment of the nonuniform lift
theory to airplane dynamics, NACA TN 667, 1938.

14. J. P. Reding and L. E. Ericsson, Aeroelastic stability of the
747/Orbiter, J. AicAmat, 14(1977), 988-993.

15. J. P. Reding and L. E. Ericsson, Effects of flow separation
on shuttle longitudinal dynamics and aeroelastic stability,
J. Spacec~.'at, 14(1977), 711-718.

16. W. P. Rodden and B. Stahl, A strip method for prediction of
damping in subsonic wind tunnel flight test, J. o AZ 'Wuzdt,
6(1969), 9-17.

17. D. L. York, Analysis of flutter and flutter suppression via
an energy method, MS Thesis, Aerospace and Ocean Engineering
Department, Virginia Polytechnic Institute and State University,
Blacksburg, VA, June, 1980.

75

L . .. L


